[−][src]Struct crossbeam::channel::Receiver
The receiving side of a channel.
Examples
use std::thread; use std::time::Duration; use crossbeam_channel::unbounded; let (s, r) = unbounded(); thread::spawn(move || { s.send(1); thread::sleep(Duration::from_secs(1)); s.send(2); }); assert_eq!(r.recv(), Ok(1)); // Received immediately. assert_eq!(r.recv(), Ok(2)); // Received after 1 second.
Methods
impl<T> Receiver<T>
[src]
impl<T> Receiver<T>
pub fn try_recv(&self) -> Result<T, TryRecvError>
[src]
pub fn try_recv(&self) -> Result<T, TryRecvError>
Attempts to receive a message from the channel without blocking.
This method will either receive a message from the channel immediately or return an error if the channel is empty.
If called on a zero-capacity channel, this method will receive a message only if there happens to be a send operation on the other side of the channel at the same time.
Examples
use crossbeam_channel::{unbounded, TryRecvError}; let (s, r) = unbounded(); assert_eq!(r.try_recv(), Err(TryRecvError::Empty)); s.send(5).unwrap(); drop(s); assert_eq!(r.try_recv(), Ok(5)); assert_eq!(r.try_recv(), Err(TryRecvError::Disconnected));
pub fn recv(&self) -> Result<T, RecvError>
[src]
pub fn recv(&self) -> Result<T, RecvError>
Blocks the current thread until a message is received or the channel is empty and disconnected.
If the channel is empty and not disconnected, this call will block until the receive operation can proceed. If the channel is empty and becomes disconnected, this call will wake up and return an error.
If called on a zero-capacity channel, this method will wait for a send operation to appear on the other side of the channel.
Examples
use std::thread; use std::time::Duration; use crossbeam_channel::{unbounded, RecvError}; let (s, r) = unbounded(); thread::spawn(move || { thread::sleep(Duration::from_secs(1)); s.send(5).unwrap(); drop(s); }); assert_eq!(r.recv(), Ok(5)); assert_eq!(r.recv(), Err(RecvError));
pub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError>
[src]
pub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError>
Waits for a message to be received from the channel, but only for a limited time.
If the channel is empty and not disconnected, this call will block until the receive operation can proceed or the operation times out. If the channel is empty and becomes disconnected, this call will wake up and return an error.
If called on a zero-capacity channel, this method will wait for a send operation to appear on the other side of the channel.
Examples
use std::thread; use std::time::Duration; use crossbeam_channel::{unbounded, RecvTimeoutError}; let (s, r) = unbounded(); thread::spawn(move || { thread::sleep(Duration::from_secs(1)); s.send(5).unwrap(); drop(s); }); assert_eq!( r.recv_timeout(Duration::from_millis(500)), Err(RecvTimeoutError::Timeout), ); assert_eq!( r.recv_timeout(Duration::from_secs(1)), Ok(5), ); assert_eq!( r.recv_timeout(Duration::from_secs(1)), Err(RecvTimeoutError::Disconnected), );
pub fn is_empty(&self) -> bool
[src]
pub fn is_empty(&self) -> bool
Returns true
if the channel is empty.
Note: Zero-capacity channels are always empty.
Examples
use crossbeam_channel::unbounded; let (s, r) = unbounded(); assert!(r.is_empty()); s.send(0).unwrap(); assert!(!r.is_empty());
pub fn is_full(&self) -> bool
[src]
pub fn is_full(&self) -> bool
Returns true
if the channel is full.
Note: Zero-capacity channels are always full.
Examples
use crossbeam_channel::bounded; let (s, r) = bounded(1); assert!(!r.is_full()); s.send(0).unwrap(); assert!(r.is_full());
pub fn len(&self) -> usize
[src]
pub fn len(&self) -> usize
Returns the number of messages in the channel.
Examples
use crossbeam_channel::unbounded; let (s, r) = unbounded(); assert_eq!(r.len(), 0); s.send(1).unwrap(); s.send(2).unwrap(); assert_eq!(r.len(), 2);
pub fn capacity(&self) -> Option<usize>
[src]
pub fn capacity(&self) -> Option<usize>
If the channel is bounded, returns its capacity.
Examples
use crossbeam_channel::{bounded, unbounded}; let (_, r) = unbounded::<i32>(); assert_eq!(r.capacity(), None); let (_, r) = bounded::<i32>(5); assert_eq!(r.capacity(), Some(5)); let (_, r) = bounded::<i32>(0); assert_eq!(r.capacity(), Some(0));
ⓘImportant traits for Iter<'a, T>pub fn iter(&self) -> Iter<T>
[src]
pub fn iter(&self) -> Iter<T>
A blocking iterator over messages in the channel.
Each call to next
blocks waiting for the next message and then returns it. However, if
the channel becomes empty and disconnected, it returns None
without blocking.
Examples
use std::thread; use crossbeam_channel::unbounded; let (s, r) = unbounded(); thread::spawn(move || { s.send(1).unwrap(); s.send(2).unwrap(); s.send(3).unwrap(); drop(s); // Disconnect the channel. }); // Collect all messages from the channel. // Note that the call to `collect` blocks until the sender is dropped. let v: Vec<_> = r.iter().collect(); assert_eq!(v, [1, 2, 3]);
ⓘImportant traits for TryIter<'a, T>pub fn try_iter(&self) -> TryIter<T>
[src]
pub fn try_iter(&self) -> TryIter<T>
A non-blocking iterator over messages in the channel.
Each call to next
returns a message if there is one ready to be received. The iterator
never blocks waiting for the next message.
Examples
use std::thread; use std::time::Duration; use crossbeam_channel::unbounded; let (s, r) = unbounded::<i32>(); thread::spawn(move || { s.send(1).unwrap(); thread::sleep(Duration::from_secs(1)); s.send(2).unwrap(); thread::sleep(Duration::from_secs(2)); s.send(3).unwrap(); }); thread::sleep(Duration::from_secs(2)); // Collect all messages from the channel without blocking. // The third message hasn't been sent yet so we'll collect only the first two. let v: Vec<_> = r.try_iter().collect(); assert_eq!(v, [1, 2]);
Trait Implementations
impl<'a, T> IntoIterator for &'a Receiver<T>
[src]
impl<'a, T> IntoIterator for &'a Receiver<T>
type Item = T
The type of the elements being iterated over.
type IntoIter = Iter<'a, T>
Which kind of iterator are we turning this into?
fn into_iter(self) -> <&'a Receiver<T> as IntoIterator>::IntoIter
[src]
fn into_iter(self) -> <&'a Receiver<T> as IntoIterator>::IntoIter
Creates an iterator from a value. Read more
impl<T> IntoIterator for Receiver<T>
[src]
impl<T> IntoIterator for Receiver<T>
type Item = T
The type of the elements being iterated over.
type IntoIter = IntoIter<T>
Which kind of iterator are we turning this into?
fn into_iter(self) -> <Receiver<T> as IntoIterator>::IntoIter
[src]
fn into_iter(self) -> <Receiver<T> as IntoIterator>::IntoIter
Creates an iterator from a value. Read more
impl<T> Debug for Receiver<T>
[src]
impl<T> Debug for Receiver<T>
fn fmt(&self, f: &mut Formatter) -> Result<(), Error>
[src]
fn fmt(&self, f: &mut Formatter) -> Result<(), Error>
Formats the value using the given formatter. Read more
impl<T> UnwindSafe for Receiver<T>
[src]
impl<T> UnwindSafe for Receiver<T>
impl<T> Drop for Receiver<T>
[src]
impl<T> Drop for Receiver<T>
impl<T> Clone for Receiver<T>
[src]
impl<T> Clone for Receiver<T>
fn clone(&self) -> Receiver<T>
[src]
fn clone(&self) -> Receiver<T>
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)
1.0.0[src]
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source
. Read more
impl<T> Send for Receiver<T> where
T: Send,
[src]
impl<T> Send for Receiver<T> where
T: Send,
impl<T> RefUnwindSafe for Receiver<T>
[src]
impl<T> RefUnwindSafe for Receiver<T>
impl<T> Sync for Receiver<T> where
T: Send,
[src]
impl<T> Sync for Receiver<T> where
T: Send,
Blanket Implementations
impl<T> From for T
[src]
impl<T> From for T
impl<T, U> Into for T where
U: From<T>,
[src]
impl<T, U> Into for T where
U: From<T>,
impl<T> ToOwned for T where
T: Clone,
[src]
impl<T> ToOwned for T where
T: Clone,
type Owned = T
fn to_owned(&self) -> T
[src]
fn to_owned(&self) -> T
Creates owned data from borrowed data, usually by cloning. Read more
fn clone_into(&self, target: &mut T)
[src]
fn clone_into(&self, target: &mut T)
🔬 This is a nightly-only experimental API. (toowned_clone_into
)
recently added
Uses borrowed data to replace owned data, usually by cloning. Read more
impl<I> IntoIterator for I where
I: Iterator,
[src]
impl<I> IntoIterator for I where
I: Iterator,
type Item = <I as Iterator>::Item
The type of the elements being iterated over.
type IntoIter = I
Which kind of iterator are we turning this into?
fn into_iter(self) -> I
[src]
fn into_iter(self) -> I
Creates an iterator from a value. Read more
impl<T, U> TryFrom for T where
T: From<U>,
[src]
impl<T, U> TryFrom for T where
T: From<U>,
type Error = !
try_from
)The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
try_from
)Performs the conversion.
impl<T> Borrow for T where
T: ?Sized,
[src]
impl<T> Borrow for T where
T: ?Sized,
ⓘImportant traits for &'a mut Wfn borrow(&self) -> &T
[src]
fn borrow(&self) -> &T
Immutably borrows from an owned value. Read more
impl<T> BorrowMut for T where
T: ?Sized,
[src]
impl<T> BorrowMut for T where
T: ?Sized,
ⓘImportant traits for &'a mut Wfn borrow_mut(&mut self) -> &mut T
[src]
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
impl<T, U> TryInto for T where
U: TryFrom<T>,
[src]
impl<T, U> TryInto for T where
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
try_from
)The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
try_from
)Performs the conversion.
impl<T> Any for T where
T: 'static + ?Sized,
[src]
impl<T> Any for T where
T: 'static + ?Sized,
fn get_type_id(&self) -> TypeId
[src]
fn get_type_id(&self) -> TypeId
🔬 This is a nightly-only experimental API. (get_type_id
)
this method will likely be replaced by an associated static
Gets the TypeId
of self
. Read more
impl<T> Erased for T
[src]
impl<T> Erased for T